devarena logo

Table of Contents

Spread the Word!

Reading Time: 5 minutes


 This blog covers the 6 famous Python libraries for data science that are easy to use, have extensive documentation, and can perform computations faster.

Data scientist is the sexiest job of the 21st century, but
what is a data scientist without data? Harvard Business Review labels data as
the new oil. There is a massive dearth of people qualified for data-related
jobs. As a beginner, you can be tempted to wet your feet in the ever-evolving
field of data science. But fear not, because Python is a programming language
that can be easily learned. Sometimes, your pseudocode can directly be
converted into Python code.

Python is increasingly used in data science-related tasks
and is becoming the de-facto standard
because it is easy to learn, easy to debug, has a rich userbase, is object-oriented,
and is easy to interpret. However, you can get lost in the intricacies and
subtleties of the many available specialized packages. Fret not, because we
have you covered!

You might be tempted
to learn about many of these libraries, but there are some libraries that are frequently used in
the domain of data science given their versatility and ease of use. In this
blog, we will be going over the six most commonly used libraries.

NumPy:

NumPy Cheat Sheet

Be it the
creation of vectors and arrays, performing some matrix multiplication, or
performing singular value decomposition, NumPy is a linear algebra-based
library that provides a vast repertoire of mathematical routines at your
disposal. NumPy is a library that deals with vectors, and matrices and offers fast
operations. It provides various functions such as array indexing and
broadcasting, consumes less memory, and is convenient. Behind the hood, it uses
multiple optimization algorithms to accelerate typically slow operations such
as matrix multiplication. The automatic broadcasting takes care of different
array sizes and makes life very convenient ultimately making it one of the most famous Python libraries for data science.

Pandas:

Pandas Cheat Sheet

Handling complex data, indexing into the data, cleaning and handling
null values, merging and joining datasets, Pandas is a python library that is
both easy and intuitive. Since it is built on top of NumPy, it can perform
tasks that would otherwise take a lot of time. Usually, by using native Python
functionality, it becomes tough to iterate over thousands of tuples to perform
some pre-processing, but by using Pandas’ wrappers, these tasks can be done in
significantly less time. Moreover, Pandas is widely used for data analysis and
looking into the summary statistics, and inferring some patterns from data,
which can help answer or validate our assumptions and hypothesis.

SciKit-Learn:

SciKit-Learn Cheat Sheet

If you want
to train complex machine learning models or have an ensemble of different
machine learning models with an intuitive and easy-to-use interface, Scikit-learn
is your friend. The beauty of Scikit-learn is that it provides a similar
interface for every machine learning algorithm, which makes the library very
intuitive to use and can easily extend the current learning algorithms by using
custom cost functions and optimization algorithms. The library also offers
various optimization algorithms to tune the model’s hyperparameters. Therefore,
Scikit-learn stays one of the most popular machine learning libraries for
Python.

Keras:

Keras Cheat Sheet

Machine
learning and deep learning have become immensely popular in recent days due to
ever-increasing computing power and that is why you see complicated models
being developed, and Keras is a Python library for data science to do that. Keras is a static
graph-based machine learning library. One of the distinguishing features is
that the computational graph of a network, once formed, will be fixed, and will
not be changed on the run-time, which means that the variables will be locked
at the run time, making the models very efficient. Moreover, the Keras
application programming interface is highly abstracted, which makes Keras very
easy to use once you have a good grasp of Python. It is used to build custom
machine learning models and is widely used in the machine learning community
for research and deployment purposes.

SciPy:

SciPy Cheat Sheet

Testing whether your assumption is valid or not to make a fundamental decision about a product’s life cycle is an important task. As SciPy is written in various low-level languages such as C, C++, and Fortran, the speed gains are tremendous compared to a library written in a high-level language. Moreover, Scipy extends the functionality of NumPy by providing access to structures that can be used to store sparse data in a highly optimized fashion and perform computations on it. The open-source nature of Scipy allows anyone to look at the source code, find bugs or optimize the numerical algorithms further. Hence, SciPy remains one of the most popular libraries for statistical tasks.

PyTorch:

PyTorch Cheat Sheet

PyTorch is a dynamic graph-based machine learning library developed by Facebook to aid
in their model development and deployment purposes. The variables, including
layers, can be changed during the iterations, making the neural networks easier
to debug and providing more flexibility. Moreover, for people having access to
GPUs, this library offers a remarkably simple flag to switch between GPU and
CPU, which makes the life of programmers extremely easy by making the code
portable.



Source link


Spread the Word!